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General Transformation Formulae in Geometric Crystallography 

BY W. F. DE JONG 

Crystallographic Laboratory of the Technical University, Delft, Holland 

(Received 23 March 1949) 

For two settings of a crystal, given four sets of corresponding indices, the compatible transformation 
equations are derived. The four sets may be face indices, edge indices or a mixed group of four sets. 

Most text-books on geometric crystal lography mention 
t ransformation formulae only for a few impor tant  
part icular cases or even none. 

Liebisch (1881, p. 55) derived general formulae with 
the aid of 'analyt ic  geometrical and Hecht  (1893, p. 58) 
of algebraic methods. These derivations are not  easy 
and their  application is not simple. 

I t  is possible, however, to give the derivation in a 
specific crystallographic way by  means of the direct and 
indirect (reciprocal) lattice. 

Fi rs t  we ment ion the formulae valid for these two 
lattices (de Jong & Bouman, 1939). 

The direct elements m a y  be a, b, c, a, fl, y and a lattice 
point [[uvw]]; the corresponding indirect elements a*, 
b*, c*, a*, fl*, y* and a lattice point [[Mcl]]. After the 
t ransi t ion to new direct axes and corresponding new 
indirect axes the points m a y  be symbolized [[UVW]] 
and [[HKL]]. Then the relevant equations are: 

H = .UA h + VA k + wA1, 

K ~ u B h  +Vzk + WB1, 
L = u c h + v c k + w c l ,  
h = h A H + h B K + h c L ,  

lc= kA H + kB K + lcc L, 
l=~AH+~.g+loL, 

wherein, for example,  

_ vA wA I 
h B ---~ Vu w C 

u A v A w A  
U B V B W B 
7~ C V U W C 

U=hA~+~v+hw. ] 
V----h.~÷~.v+~.~. [ 
W = h c u + k c v + l c w ,  

U = u A U ' ~ - U B V - ~ ' U c W '  [ 

v=vAU+vBV+vcW, | 
w==wAU-~  w B V - ~ - w u W  , ] 

(i) 

I } ha kA la 
h. ~. l. 
he kc lc 

The coefficients in (1) are the co-ordinates of the 
points nearest to the origin 0, or to 0" ,  of the old or new 
axes, described in new or old co-ordinates respectively. 
This is obvious by  inserting 

old [[hkl]] =- [[100]] becomes new [[UAUBUc]],etc. (3) 

The symbols [uvw] of crystal edges and (hkl) of faces 
are not absolute numbers,  but  they  indicate ratios, so 
tha t  they  do not  correspond to one point in the latt ice 
concerned but  to a row of lattice points, which contain 
0 or 0" .  Therefore the edge [uvw] corresponds to 

f[[uvw]] and the face (hkl)tof*[[hld]], wherein f and f*  
are whole nu~mbers. 

\ 

The determinat ion of the nine quanti t ies uA.. .  w c and 
the dependent  ha . . .  lcxlemands three transitions: 

[[ulvlwl]], [[u~v~w~]], [[u3v3w3]], 

[[U~ViW1]], [[UW~W~]], [[U3V3W3]]. 
The determinat ion demands,  however, four tran- 

sitions of rows: 

f l [[u 1 v 1Wl] ] ... fa[[u, v 4 w,]], 

FI[[ u1 v1 w1]] ... F,[[ U, V, W,]]. 
For, from the twelve equalities 

f~ ul = uAF~ U~ + u~F~ V~ + ucF~ W.  

f 4 u4 = wAF4U 4 + WBF4V4 + wcF4 W4, 
nine quantit ies uA... w c and three 

ratios f~/F1 f2/F2 and f3/F3 
f~IF~' ,51F3 f,/F, 

can be derived. 
Algebraically, however, this calculation is cumber- 

some, and we choose the following method. 
Four transitions of edges m a y  be given: 

[ul V~ Wl], [usv~w2], [u3vsw3], [u4v4w4], 

[U1V1W1], [UW~W~], [U3V3Ws], [U4V4W4], 
and we desire to know the formulae for the t ransi t ion 
of an arbi t rary  edge [uvw]-+ [UVW], in (~ther words the  
quanti t ies uA...  w c. 

We consider the corresponding rows in the direct 
lattice and apply  the property tha t  it is always possible 
to indicate a row-point on each of the first three rows 
in such a manner  tha t  the vectorial sum of the radius 
vectors from 0 to these points determinea the radius 
vector from 0 to a point of the fourth row; these points 
m a y  be [[hlU 1, hlV 1, Alwl]], etc. Then 

ha u4 = hi  ul  + h~ u~ + ~3 u3, 

ha va = hi vl + As v~ + A8 v3, 

A4 W4 = 21 Wl + AS W2 + 23 W3' (4) 

and A 4 U 4 = A 1 U 1 + A 2 U~ + A 3 U 3, 

A4V 4 = A1V 1 + A~V~. + A3V z, 

A 4 W t = A 1 W l + A s W~ + h 3 W 3. 
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From Fig. 1 it follows tha t  

A 1 r~ A 2 r~ and AIr 1 A s r 3 
A1R ~ -- AcRe. A1R 1 - AsR s" 

Now r 1 = R~, r~ = R~. and r s = R s, so tha t  

A1 A~ As 

A~ - k~ - A s" 
Analogously 

#u  = #1 Ul + #~. u2 + #s us, 

/~v = #1 v~ + #2 v~. + #s vs, 

/~w =/~1 wl -~- #2 w2 Jr./~3 w3, 

M U = M1 U 1 + M~. U2 + M s U s, 

MV = M1V ~ + M~V~. + MsVa, 
M W = M~ W~ + M~ W~ + Ms Ws, 

(5) 

(6) 

and  /t~ /t~ /t s 
M~ - M~. - M s" 

From (5) and (7) it follows tha t  

A1/A 1 ' A~./A~ As/As - G, 

/*I/ M1 -tt2/ M 2 -/~s/ Ma 

where G is a number .  
We derive from (4) 

A~t A4 

A 1 =  , A1 = 

~4 U2 US 

V 4 V2 Us 

W4 W2 W3 

~1 U2 US 

V 1 V2 V s 

W 1 W2 W s 

Ua U~ U 3 
Va V~ Vs 
W~ W~ W~ 

U 1 U 2 U 3 
V~ V2 Vs 
W 1 W 2 W s 

(7) 

(s) 

and, from (6), analogous expressions for / t  I and M 1. 

The equal i ty  of the first and fourth te rm of (8) then 
becomes 

U4 U 2 U3 

A 4 v 4 v~. v s 
W 4 W2 W3 

u I u 2  u s 

v I v2 vs  

w I w2 w s 

o r  

M 

X 

U 1 U 2 U 3 

V 1 V2 VS 

W 1 W 2 W 3 

i/£ u U 2 u 3 
V V 2 V 3 ' 

W W 2 W 3 

M A  4 

A4#G 

U U~. Us 
V V2 Vs 
W W 2 W 3 

U U~ U s 
V V~. Vs 
W W2 W3 

U1 U2 Us 
V1 V2 Vs 
W1 W~ W3 

U1 U2 Us 
V1 V2 V3 
W1 W2 Ws 

X 

A4 
Ua U 2 U s 
V4 V2 Vs 
W4 W~. Ws 

U~ U2 Us 
V4 V2 V3 
W4 W~ Ws 
U4 U2 U s 

V4 V2 VS 

W 4 W 2 W s 

=G, 

U ~2 US 

V V 2 V s 

W W 2 W s 

We call the fraction P1 ,  and have further in the same 
manner  P2 and Ps. Hence 

U2 Us U4 
V2 Vs V4 
W2 Ws W4 

Pz -= 
U2 U3 U 4 

V2 Us V4 

W 2 W s W4 

U 1 U s U4 
V1 Vs V4 
W1 Ws W4 

, P 2  ~ 
U 1 U s U4 

V 1 V s V4 

W 1 W s W4 

U1 U2 U~ 
V1 V2 V4 
W1 W2 W4 

Ps ~ 
U 1 U2 U 4 " 

V 1 V 2 V4 

Wl  W2 W 4 

Then, from the three equalities (8), 

MA 4 
A4#G 

MAa 

U U~. U s 
V V~. Vs 
W W~. Ws 

U1 U U s 
V1 V Vs 
W1 W Wa 

= P1 

= P2 

?~ U 2 U s 

V V 2 V s 

W W 2 W s 

U 1 ?~ U 3 

V 1 V V s 

W 1 W W s 
A4/~G 

A ~  V1 V~. V = vl v2 v . 
W1 W~. W w 1 w2 w 

Omitt ing the common factor and solving for U, V and 
W, we find the ratios U : V : W, wherein E'I  Iv w L [v w l 1 U =  v2 P 1 U I +  P ~ U 2 +  P3Us u 

v3 w3 Vl wl v2 w2 

+ P1 U1 + P2 Ps Us v 
W 3 U3 W 1 U l  W 2 U 2 

+ PIUI+ P~ PsU w, 
U s Vl U 2 V 2 

1 ::. IVl'l 1 V= iv2 w2 P1VI + ws P2 V2 + Ps Vs u 
V s W s V 2 W 2 

E w..-i U l  I 3] + P1 VI+  P2 Ps V v 
w3 us ul I w2 u2 

E vL I':: lu':: + P1 V1 + P2 V~ + Ps Vs w, 
g3 V3 Ul U2 

Iv 'l Iv 'l a W= w~. P1WI + P2 W2 + Ps W u 
{ V 1 W 1 V 2 W 2 

E'" w: 31 w:l + P1 W1 + P2 Pa v 
w 3 U s U 1 w 2 U 2 

E I':: I'v'l + P1WI+ P2W2+ PaWs w. 
U s V s Ul  U2 V2 

Disregarding a common factor, the expressions between 
the square brackets are 

h. k~ 1B, 
he kc l o  

and the quanti t ies  us..: w c m a y  be calculated from (2). 
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Fig. 1. The composi t ion  of  radius  vec tors  to the  row-points  ]t4[[u4v4w4] ] and  A4[[U4V4W4]] ,  f rom three  o ther  vec tors  to  
the  row:poin ts  Al[[UiVlWl]], etc.  ri is the  length of  the  radius  vec to r  f rom O to the  po in t  [[½viwl]], etc.  

When four transitions of crystal faces (hilcili)---> 
(HiKiL1), .etc., are given, we can derive analogous 
formulae with the aid of the indirect lattice. Indicating 

we have 

H~ H a H a 
K~. K a K a 
L2 La La 
h~ h a h a 
/c2 /c a /c a 
l~ I a l a 

Ps*--- 

Hi  Ha Ha I 
Ki  Ks K4. 
Li La La 
hi ha ha ' 
ki /ca ]¢ a 
ll la la 

H i H~ H a 
Ki  Ks Ka 
Li L2 La 
h i h~ ha t' 
ki k~. ka 
li g la 

F l~ h 2 lahal *PzHz+llaha lih' P*aHa] k P l + 
h. I _  

h~, Ic,, ha lea , hi  lq 

li lh la ha P*K~ + I 

/ 
/ O "  

" I 

/ I ! , 
I 

I 
I 

I 
I 

I 

' I 
I 

I 
I 

i 

/e 
! 
I 
! 
! 
! 
! 

! 
! 

! 
! 
! 

h~. k, h a/c a h i k i 
+[ h a ka l P~ Li + l hi lq [ P* L2 + l h~ lc2 [ P*a La] l" 

The expressions between the square bracket~ are 
proportional to 

u~v~w~,  
U B V B W  B , 

~ G  VU W C '  

and hA... 1 c may  be derived from (2). 
I f  we are given, for example,  th ree  transitions of 

edges and one of a face, or another combination of four 
transitions, the easiest method is to reduce the case to 
one of those t reated above by a few cross-multipli- 
cations. 

The directions of the old and new axes follow im- 
mediately from (3). 

Bxample* 
Axinite, triclinic pinacoidal. 

We call the setting after Naumann  the old 'and after 
Vom Ra th  the new. Given 

(Naumann) [112] [001] [110] (131) 

( V o m R a t h )  [001] [112] [112] (00i), 

* Cf. Liebisch (1881, p. 60) a n d E n c y c l ,  d.  m a t h .  W i s s  (1905) 
V, 1,410. 

• ! 
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three cross-multiphcations show tha t  this is 
t o  

(Naumann)  

(Vom Rath)  

Then 
2 0 1 
i 1 o 
o o i 

P * - l i  0 

1 i 1 
$ 3 1 

I i  
u ~ =  i 

equivalent  

u(110) p ( l l 0 )  r(1$1) (i31) 

(110) (201) (i10) (001). 

= - 1 ,  P * =  

1 1 0 
~ 0. 1 
0 0 i 

Pa*= = -- 1, 

1 1 0 
i 1 0 
0 0 1 

1 1 0 
1 i 1 
i 3 1 

1 1 0 
1 1 0 
1 3 1 

- - _ !  

o I i ll 1 ( - 1 ) ( - 1 ) +  1 0 ( - ½ ) ( - 2 )  

I 1 ° I 0 + T o ( - 1 ) ( - 1 ) =  

In  the same way we find 

U A  = 5 1 W A  _~  2 ---~, VA= ---~, a, 

UB= --1, VB= -- I, W B = 2  , 

uc=-~, v c =  ~ - -  -~ , W C ~ -  ~ -~.  

The dependent  coefficients are, from (2), 

h~=_i, k~=0, 
h~=0, kB=-~, 
hc=-~, ko=-i, 

The t ransformat ion formulae 

H = - 5h - k - 2l, 

K = - 3 h -  3k + 61, 

L = h - k - 2 1 ,  

Vom R a t h  chose his axes 
N a u m a n n  symbolized 

[u~ v~ w~], 

[uBvBwB], 

[ucvcwc], 

l ~  1 
"~- 1 2 ,  

zB=¢~, 
1 

/C = 6" 

a r e  

U = - 2 u -  w, 

V = - 2 v + w ,  

W = 2u - 6v - 2w. 

along the edges, which 

[512], 

[112], 

[112]. 

I am great ly indebted to Dr  J .  Bouman  for his 
revision of the  manuscript .  

References 

H_ECrrT, B. (1893). Anleitung zur Krystallbestimmung. 
Leipzig: Barth. 

DE JO~G, W. F. & BOVMA_W, g. (1939). Z. KrystaUogr. 
101, 317. 

LrEmSCrr, T. (1881). Geometrische Krystallographie. 
Leipzig: Enge lmarm. .  

Acta Cryst. (1949). 2, 325 

Thermal Scattering of  X-rays by a Close-packed Hexagonal  Lattice 

BY N. K.  POPE 

University of  Edinburgh,  Scotland 

(Received 2 June 1949) 

The dynamical properties of a crystal for small vibrations can be described by the set of coefficients 
of the potential energy forming the dynamical matrix. The elastic constants and many other 
observable quantities can be calculated in terms of the elements of the dynamical matrix, but, in 
general, the reverse does not hold. On the assumptions that  only central forces need to be considered, 
and that  only next-neighbour atoms act on one another, the dynamical matrix for a close-packed 
hexagonal lattice is expressed in terms of one atomic constant, which can be determined by com- 
paring the expressions for the elastic constants with experiment. The Fourier transform of the 
dynamical matrix and its reciprocal, which in first approximation is proportional to the scattering 
matrix, are then calculated. A diagram of the equidiffusion lines, which covers a part  of reciprocal 
space containing sixteen lattice points, is drawn. The diagram shows that  the 'extra  spots '  are 
surrounded by a weak background which exhibits considerable fine structure. The equidifftmion lines 
constructed for the vicinity of the selective reflexions (Jahn case) agree with those calculated by 
Begbie for beryl. :No trace is found of the intense star pattern observed by Lonsdale for ice and 
ammonium fluoride. 

In t roduct ion 

The general theory  of the thermal  scattering of X-rays  
has been given by several physicists. The most  impor tan t  

AC2 

publication is probably  t h a t  of Waller (1925). A con- 
densed presentat ion of this theory  appeared in Reports 
on Progress in Physics  (Born, 1942-3), which contains 


