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- General Transformation Formulae in Geometric Crystallography

By W. F. pE Jone
Crystallographic Laboratory of the Technical University, Delft, Holland

(Recetved 23 March 1949)

For two settings of a crystal, given four sets of corresponding indices, the compatible transformation
equations are derived. The four sets may be face indices, edge indices or a mixed group of four sets.

Most text-books on geometric crystallography mention
transformation formulae only for a few 1mp0rtant
particular cases or even none.

Liebisch (1881, p. 55) derived general formulae with
the aid of analytic geometrical and Hecht (1893, p. 58)
of algebraic methods. These derivations are not ea,sy
and their application is not snnple

It is possible, however, to give the derivation in a
specific crystallographic way by means of the direct and
indirect (reciprocal) lattice.

First we mention the formulae valid for these two
lattices (de Jong & Bouman, 1939).

The direct elements may be a, b, ¢, a, £,y and a lattice
point [[uvw]]; the corresponding indirect elements a*,
b*, ¢*, a*, B*, v* and a lattice point [[Akl]]. After the
transition to new direct axes and corresponding new
indirect axes the points may be symbolized [[UV W1]]
and [[HK L]]. Then the relevant equations are:

H=y, h+vk+w,l, U=hqutkv+l,w,
K=ugh+vgk+wgl, V=hgutkgv+lzw,
L=ugh+vgk+wgl, W=hou+kov+low,
h=hyH+hgK+hoL, u=u,U+ugV+u,W,
k=k H+kgK+koL, v=v,U0+vgV+v.W,
=L H+IgK+Il,L, w=w,U+wgV+wW,
wherein, for example, '

(1)

| Y4 Wy ' _Pha U ‘
Vo W¢ hg lg
= — d =1 = 21 2
s Uy Vg Wy and e hy kg Uy @
uB 'l)B wB B lB
Us Vg Wo he ko o

The coefficients in (1) are the co-ordinates of the
_ points nearest to the origin O, or to O*, of the old or new
axes, described in new or old co-ordinates respectively.
This is obvious by inserting

old [[k!]]=[[100]] becomes

The symbols [uvw] of crystal edges and (%kl) of faces
are not absolute numbers, but they indicate ratios, so
that they do not correspond to one point in the lattice
concerned but to a row of lattice points, which contain
O or O*. Therefore the edge [uww] corresponds to
fl[uvw]] and the face (hkl) to f¥[[#KI]], wherein f and f*
are Whole numbers.

new [[u uguc]].ete. (3)

The determination of the nine quantities u ... wyand
the dependent %, . lCdema,nds three transitions:
([wy vy 04]], [[ugvawell,  [[usvyws]l,
([OViWL [[UVWell,  [[UsVsWill.

The determination demands, however, four tran-
sitions of rows:

Flluy o] .. fulltgvgwyl,

F\[[U VWAl Fy[[UV,W,]1.
For, from the twelve equalities
f1:“'1 =uy Uy +ugF\Vi+ucF Wy,

f4u4=wAF4U4+wBF4V4+wCF4W4,
nine quantities u, ... wy and three

WE folFy g SolEs
fIFy" f3]Fy JdFy

can be derived.

Algebraically, however, this calculation is cumber-
some, and we choose the following method.

Four transitions of edges may be given:

[ugviw1],  [wevew,],  [ug ”i. W),

ratios

[uavaw,],

[UIVI Wl]’ [U2V2 W2]’ [U3V3 W3]’ [U4V4W4]r

and we desire to know the formulae for the transition
of an arbitrary edge [uvw] [ UV W1, in other words the
quantities u 4 ... we.

We consider the corresponding rows in the direct
lattice and apply the property that it is always possible
to indicate a row-point on each of the first three rows
in such a manner that the vectorial sum of the radius
vectors from O to these points determines the radius
vector from O to a point of the fourth row; these points
may be [[A%;, Ayv;, A;w,]], ete. Then

Ag Uy =AUy + Ag U+ Ag s,

Agvy=A1 01 + A5 05+ A0y,

AWy =23 w; + AWy + Az ws,
AU =AU+ AU, + AU,
AV, =AMV + AV, + AV,
AW =AW+ AW+ AW,

4

and
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From Fig. 1 it follows that

Ay
AR,

_ AgTy

AR,

A7y _ As73
A Rl_A R,

Now r,= R, r,=R, and r3= Ry, so that
A_A A

A

A,

=3, ®)
Analogously
HU= g Uy + Pop Up + fg Uy,
MU=y U1+ Jp Ut Y Vs,
P = g Wy + ppWat g W,
MU=M,U,+M,U,+M,U,,
C MV=MVi+M,V,+M;V,,
MW=MW,+M,W,+M;W,,

(6)

o _ta _Hs
M, M, M;
From (5) and (7) it follows that
Ay - AJAy _ AofAq
/My g My g Mg

where G is a number.
We derive from (4)

and

=@, (8)

U, U, U
Ve Vi Vs
W, W, W,
U, U, Us
V. V, V,
Wy W, Wi

Uy Uy Ug
Vg Vg U3
Wy, Wy Wy

A

A= A=

I
Uy Uy Ug

v Uy U
w, Wy, Wy

and, from (6), analogous expressions for u, and M.
The equality of the first and fourth term of (8) then
becomes

Uy Uy Ug v U, U,
Adl vy vy v M|V V, Vg
Wy Wy Wy | W W, W,
Uy Uy Ug U, U, U,
vy Uy Vg Ve, Vo V4
Wy Wy W W, W, W;
U Uy Ug u, U, U
vy Vs U3 Vi Vs Vs
w; W, Wy w, W, W,
=@,
x U Uy Ug x v, U, U,
H| UV Uy Uy M| Ve Vy Vs
W W, Wy w, W, W,
or
v, U, U,
Ve Vo Vg,
| U0 0| L
AuG 2 307wy, u, u 2 8
MWW, W, 4 T2 ™ 1 w Wy Wy
‘ Vg Uy U
wy Wy W I
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We call the fraction P;, and have further in the same

manner P, and P;. Hence
v, U, U, U, U; U,
Vo Vi V4 V, V3 V,
PlE W2 W3 th , PzE Wl W3 W4 ,
Ug U3 Uy Uy U Uy
Vo U3 Y Uy U3 Yy
Wy Wy W, w, Wz Wy
U, U, U,
Ve V, V,
A A7
Uy Uy Uy
V1 Uy Yy
Wy Wy Wy
Then, from the three equalities (8),
v U, U U Uy U
MA 2 3 2 U
A 4G' V. Vy, Vg |=Plv vy, v |,
T 4 W, W, W ow, W,
M2 u, U U, Uy U Ug
W Vi V. Vg |=Py|lv, v vy |,
ST oW W, w, W W
u, U, U Uy Uy U
M 1 2 1 U
3 2; Vi Vo, V [=Pslv, v, v
4l W, W w w, w, w

Omitting the common factor and solving for U, V and
W, we find the ratios U : V : W, wherein

u=||" " pU,+ 3P2U2 ot Py fu
V3 Wy 1 2
+ w2u2PU+w3u3PU+w1u1PU
W3 Ug Wy % Wo U
+ “2”2PU+“3”3PU "I”IPU
u303 1 2 . 3
V:[; Y2 Y2l p oy (" sl p, |t ™ ik V:l
VU3 Wy 1y Wy Vo
+[w2“2 PV, + 3P2V2 ’””“PV
W3 Ug 1 Wy U
[“2'”2131/1 PV+“1”‘PV]
Uz V3 1 Ug
W[”zwz vsw:sPW_l_UlwlPW:I
1 2
+|:w2u2PW1 3u3PW+w1u1PW:|
W3 Ug 1
+[“2 P[0 P2W+u1 ”llp W]
Ug Vg Uy Uy

Disregarding a common fa,ctor, the expressions between
the square brackets are

hA kA lA’
hB kB lB 4
hC’ k C ZC ’

and the quantities u, ... wy may be calculated from (2).
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Fig. 1. The composition of radius vectors to the row-points A,[[uw,w,]] and AJ[U,V,W,]], from three other vectors to
the row-points A[[%v,w,]], ete. 7, is the length of the radius vector from O to the point [[u,v,w,]], ete.

When four transitions of crystal faces (hk,l;)— ks 1y ks 1y k1
(H,K,L;), etc., are given, we can derive analogous L= l: ks 1 PrL+ k1 PiLy+ k: li P;“L{Ih
formulae with the aid of the indirect lattice. Indicating L L I
H, Hy; H, H, H; H, +|: l2 h2 PiLi+ l3 k3 Pily+ ll hl P§L3:|k
K2 K3 K4 Kl K3 K4» 3 "8 1“1 2 02
L, L, L | L, L, L by kp hy k hy k
* — 2 3 4 ® 1 3 4 P*L SP*L 1 IP*L L
P2 b P D e | +[h3k3 R I ARkt I Ak
‘ 202 ;c3 504 ;‘1 203 204 The expressions between the square brackets are
2 3 103 4 proportional to
H, H, H, Ug Vg Wy
K, K, K, ug vp wg,
Pg — Ll L2 L4 Us Yo Wes
N A ’
vooE ot and k4 ... l; may be derived from (2).
ky ky Kk c | .
L L1 If we are given, for example, three transitions of
roeoo edges and one of a face, or another combination of four
we have
k- ’ . el ol transitions, the easiest method is to reduce the case to
H=|: 22 pxg o |%8 8| pry 10 A prg | one of those treated above by a few cross-multipli-
ky L Yk LT ke R cations.
4 : '12 ha| a I by . L hy The directions of the old and new axes follow im-
+[ L p | PTHH I PR H B P’a"Ha]k mediately from (3).
3 N3 1 ] . 2 Ny
by ks o by kg Py k| Example*
_ -+[ hy deg| TYET | g | DRHat | 1 P 3H3] L Axinite, triclinic pinacoidal.
b e k1, We call the setting after Naumann the old‘and after
K =|: kz l"’ P¥K, + Ic3 l3 P¥K,+ kl . P?;"K{Ik Vom Rath the new. Given
Lh o . (Naumann) [1T2] [001] [110] (I31)
+I:l2 h2 P¥K, + 13 hs PiK, |t 1 P;"K{Ik
3 3 14 by b (Vom Rath) [001] [I12] [I12] (0OI),
: hy k hs k hy k T
+_|: h2 k2 P¥K, + h: k: P’§K2+J hl kl Pg‘Ks:I I, v*lCi.lI(;iebisch (1881, p. 60) and Encycl. d. math. Wiss (1905)
3 K3 2 %2 » 1, 410,
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three cross-multiplications show that this is equivalent The dependent coefficients are, from (2),
to

T, T T . hA::—'l', IC =0, lA———__l*,
(Naumann) % (110) p(110) r(111) (I31) : 6 T4 12
h’B=0’ kB= “%’ le'fl—’
(Vom Rath)  (1I0) (201) (110) (0OI). ho=3%,  kg=-1%, lg=-1.
Then B o The transformation formulae are
2 01 1 10
110 T 10 H=—-5h—Fk-2I, U= —-2u—w,
prot 90 L S % AL B Y K=—3h—3k+6l, V=—2v+uw,
1 10 110 8 L=h—Fk-2l, W =2u—6v—2w.
1 11 1 11 .
1 3 1 1 38 1 Vom Rath chose his axes along the edges, which
. Naumann symbolized
I 10 _
201 [ugvwy), [512],
Pi= (1) (l) (1) =1, [upvgwg], [112], v
1 1o [ucvowe], [112].
B I3 _1 I am greatly indebted to Dr J. Bouman for his
I o 11 1 revision of the manuscript.
Uy=| ¢ (=D(=1)+ —3)(=2)
I 1 1 0
10 References
+{_ l(—l)(—1)=—% ° |
10 Hecar, B. (1893). Anleitung zur Krystallbestimmung.
In the same way we find Leipzig: Barth.
u = _%, vy= _%, wy= _%, DElg;)N:;;l,7W. F. & Bouman, J. (1939). Z. Krystallogr.
up=—1, vp=-1, wp=2, Lispiscn, T. (1881). Geometrische Krystallographie.
ug=1%, vo=—%, we=-—-%. Leipzig: Engelmann. .
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Thermal Scattering of X-rays by a Close-packed Hexagonal Lattice

By N. K. PopE
University of Edinburgh, Scotland

(Recetved 2 June 1949) ‘

The dynamical properties of a crystal for small vibrations can be described by the set of coefficients
of the potential energy forming the dynamical matrix. The elastic constants and many other
observable quantities can be calculated in terms of the elements of the dynamical matrix, but, in
general, the reverse does not hold. On the assumptions that only central forces need to be considered,
and that only next-neighbour atoms act on one another, the dynamical matrix for a close-packed
hexagonal lattice is expressed in terms of one atomic constant, which can be determined by com-
paring the expressions for the elastic constants with experiment. The Fourier transform of the
dynamical matrix and its reciprocal, which in first approximation is proportional to the scattering
matrix, are then calculated. A diagram of the equidiffusion lines, which covers a part of reciprocal
space containing sixteen lattice points, is drawn. The diagram shows that the ‘extra spots’ are
surrounded by a weak background which exhibits considerable fine structure. The equidiffusion lines
constructed for the vicinity of the selective reflexions (Jahn case) agree with those calculated by
Begbie for beryl. No trace is found of the intense star pattern observed by Lonsdale for ice and
ammonium fluoride.

Introduction publication is probably that of Waller (1925). A con-
The general theory of the thermal scattering of X-rays densed presentation of this theory appeared in Eeports
hasbeen given by several physicists. The mostimportant  on Progress in Physics (Born, 1942-3), which contains
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